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WAYS OF ALLOWING FOR A PRIORI INFORMATION IN REGULARIZING 

GRADIENT ALGORITHMS 

S. V. Rumyantsev UDC 536.24:517.688 

Ways of allowing for a pr~or~ information on an unknown quantity in the solution 
of boundary-value and coefficient inverse problems of heat conduction by gradient 
methods are considered. 

In the solution of inverse problems of heat conduction (IPHC), llke any other ill-posed 
problem the qualitatively obtained approximations essentially depend on the proper and com- 
plete allowance for all the available a prior~ information about the solution being sought 
[i, 2]. And the widespread case in IPHC is the presence of information about the smoothness 
of the solution. 

Let an IPHC be formulated as an operator equation of the first kind, 

Au= f, uEU, [EF, (1) 

where we s h a l l  t a k e  t h e  o p e r a t o r  A as F r e c h e t  d i f f e r e n t i a b l e .  The c h o i c e  o f  t h e  s p a c e s  U and 
F i s  d i c t a t e d  by t h e  s t a t e m e n t  o f  t h e  p rob l em i t s e l f :  They must  c o n t a i n  s u f f i c i e n t l y  b r o a d  
classes of functions, which will include all physically possible solutions u and any initial 
data f with allowance for the distortions introduced by the measurement systems. Therefore, 
the space L2 of functions with an integrable square is taken most often as the spaces U and 
F. This is a Hilbert space, enabling one to apply gradient methods for the solution of Eq. 
(1 ) .  

For concrete problems, however, there is often additional, qualitative, a pr~or~ infor- 
mation about the solution being sought, which is usually given in one of two forms: 

i) u i@ L[V], a transform of a certain continuous linear operator L:V + U; 
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2) u 6 V, a certain Hilbert space with a stronger norm than in the space U. For exam- 
ple, if U = L2, than Sobolev spaces W k of functions having k generalized derivatives are of- 
ten put forward as V. 

We note that a priori information of these types alone is usually insufficient for the 
construction of regularizing algorithms, and serves only for narrowing the set of possible 
solutions. For the construction of regularizing gradient algorithms one can use, e.g., the 
discrepancy criterion, which is rigorously founded for linear ill-posed problems [3, 4], and 
also used successfully for the solution of certain nonlinear IPHC, those of [5, 6], for ex- 
amp le. 

To allow for information on smoothness of the first type one can convert to the auxili- 
ary equation 

B v = [  B = A L : V - . 4 - F  (2) 

and write for it the calculating equations of some gradient method: 

v ,~+~ = v,~ - -  E ~ S ' v , ~  - -  v,~ - ~,~ ( B ' ) * ( B v ~  - -  f ) .  (3) 

Here B' is the Frechet derivative of the operator B; (B')*, operator conjugate with B': J'v n, 
gradient of the discrepancy functional of Eq. (2); Bn, step of the descent. In this case 
(B')* = ((AL)')* = (A'L)* = L*(A'*), since L' = L by virtue of the linearity of the operator L. 

Applying the operator L to both sides of (3), we obtain a succession of approximations 
to the solution being sought: 

u~+~ = u,~ -- ~,~LL* (A')*(Au~ -- f). (4) 

Such  an a p p r o a c h  i s  a n a l y z e d  i n  m o r e  d e t a i l  i n  [ 2 ] .  

The presence of information of the second type can be reduced to the case under consid- 
eration if one sets L = I, the operator of embedding of V into U, which sets each element 
u @ V in correspondence to the same element, but now treated in the space U. In this case 
the succession (4) takes the form 

u~+~ = u , ~ -  ~ j *  (A')*(Au~-- f). (5) 

To construct the succession (5) one must obtain an expression for the operator I*. Let 
us consider the particular case when U L2[0, Tin], V~2N[0, Tin] , " 2 2 (h) 2 = [Ivll~v~ = !lv lk, § p Ilv IlL, p > o. 
By the definition of a conjugate operator, for any uCL2, vCW~ ~ and u* : l*u the identity 
(u, V)L2 = (u*, v)wk must be satisfied. From this, through integration by parts, we have 

0 0 

Trn ~m 
(~--i) Tm 

j" u*vdT + p u * ~ v  o - -P  t" u*(k+1)v(k-t)d~ . . . .  = 
0 0 

~m h 

0 7=I 

Thus, the function u* = !*u is a solution of the boundary-value problem 

u* (x) + ( - -1 )hpu *(2h~ (x) = u(~) ,  

u *~h~ (0) = u *(h~ ( ~ )  . . . .  = u  * ( 2 h - ~  ( 0 ) =  u *~2k-~  (T~) = 0. 

It is also easy to obtain an explicit expression for the function u*(T). For k = i, for ex- 
ample, 

o 
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These approaches to the allowance for ~ p r < o r 6  information can be used in those cases 
when there are sufficiently simple expressions for the operator (A')*, such as in boundary- 
value IPHC. In coefficient IPHC the expression for (A')* is inconvenient for calculation 
but, in return, the corresponding values for finite-dimensional approximations of the origi- 
nal operator A are easily calculated. Let us consider this case in more detail. 

In the space U let a subspace U m be chosen with a basis {~i} , i = I, ..., m, and let the 

m 

solution be sought in the form u =~ai~i~-< a, ~ > . Then we consider a finite-dlmensional 
i=l 

approximation of Eq. (I): 

A~u = [, A~  : U~--+ F, A~a = Au, u ~ U~. (6) 

I f  we i n t r o d u c e  t h e  o p e r a t o r  D a =  ( a, , ) , ,  then  we can r e w r i t e  (6) in  t h e  form 

Ca : [; C = A~D : R ~ -~  F. 

Let the expression for (C')* be known; then C' = A'mD' = A'mD, since D is a linear op- 
erator. Consequently, (C')* = D*(A'm)*. Hence (A'm)* = (D*)-*(C') *, i.e~, the expression 
for (A'm)* can be obtained through (C')*, and hence the expression for the discrepancy gradi- 
ent of Eq. (6) can be obtained. For this we need to find (D*)-t. First we find D* from the 

i d e n t i t y  (b, b*)Rm~--([~, U), b~  ~m, ~,  : D 'u ,  u = < a, ~ ) E Um �9 From t h i s  

i = l  / = 1  i = l  / = 1  

where  Gu = [(~i, ~)v)_m i s  t h e  Gram m a t r i x  o f  t he  b a s i s  ~. C o n s e q u e n t l y ,  D*u = Gua. S i n c e  
(D*)-~D*u-~ u =  ( a, ~ >, , we o b v i o u s l y  have  (D*)-ib-:-- (G~lb,  ~ > . 

In  o r d e r  t o  a l l o w  f o r  a p r i o r i  i n f o r m a t i o n  o f  the  second  t y p e  in  t h e  c a s e  unde r  c o n s i d -  
e r a t i o n ,  it is sufficient to take the matrix G V ~-[(~, ~)r]m instead of the matrix G U. 

As an example, let us consider the problem of determining u(T) = %(T) from the known tem- 
perature f(r) = T(0, T) at the point x = 0 of a body in which the process of heat transfer is 
described by the following equation and boundary conditions: 

c (T )T~  = (u(T) Tx)x, (x, ~)E~ = (0, b)• Tin], (7) 

T (x, O) = % (x), T (b, "~) = Tb (~), - - u  (T) Tx ]~=0 = q (~)" 

The Frechet derivative of the operator of this problem A'Au = AT(0, T) 
tion of the problem in increments, 

(cAT),= uATxx + uxATx + (uxAT)~ + (TxAu)x, 

AT(x ,  O) = O, AT(b,  *) = 0, --(uAT)~[x=0 = T~Aulx=0" (8) 

Then we consider the following conjugate problem for (8): 

c~,  + u~xx = 0, (9)  

, (x, %,0 : o, r (b, , )  := o, - - u , =  I,=o = Af (,). 

It is easy to verify that the following identity holds for any Au(x ,  ~)EL2[~] ,  A/EL2[0, Tin]: 

is found from the solu- 

~m 

f AT (0, T) Af ('c) d+ - -  fj" Au (x, x)[--Tx*x] d~. 
0 ~2 

(10) 

If Au(T) is treated as an element of the space La[To, Tm], then to determine (A')* it 
remains to perform a change of variables in the double integral in Eq. (I0), introducing the 

new variables T = T(x, T) and w = w(x, T) such that the Jacobian 0(x,T) 
0(T~) 

zero in ~. Then, since AU(X,T) = Au(T(x, T)), we find 

is different from 
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Au (T)[--Tx~] 0 (x, "r) r w,(!~) [ O (x, "r) ~ Au[--Txt~x] dxdT-- f~ ~ dTdw ---- !oAu(T)dT [--Tx~x] dw. 

Consequently, 

wdT) 

Au* = (A ' )*A f  = ~ O(T,  w) d~,. 

It is difficult to construct a universal algorithm for calculating (A')* from this equa- 
tion. But if we consider a finite-dimensional approximation of the problem in the form 

??z 

Au(T)= Aai~,(T), , then the necessity for a change of variables drops out. In this case 

from the identity (i0) we obtain 

�9 m m 

j" AT (0, A: = Aa, J'J" (r  (,, A a * ) : .  
0 ~=I f~ " 

Consequent ly, 

Knowing (C')*, it is now easy, as was shown above, to find (A'm)*. As the functions 9i(T) 
one can choose B-splines of the corresponding orders: If one considers that u(T)@W~ [T~ Tm], 
then one must take splines of an order no lower than k. The scalar products in the Gram ma- 
trix G V are then calculated in the space W~[To, Tm]. 

NOTATION 

U, F, V, Hilbert spaces; A', B', C', derivatives of the Frechet operators A, B, and C; 
Um~ m-dimensional subspace of the space U; ~ , basis in Um; GU, Gram matrix of the basis ~ ; 
G U *, inverse matrix for the matrix GU; R m, Euclidian space; X(T), coefficient of thermal 
conductivity; C(T), coefficient of heat capacity; T, temperature; T, time. 
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